Mutliplayer Snake Al
(CS221 Project Final Report

Felix CREVIER, Sebastien DUBOIS, Sebastien LEVY
12/16/2016

Abstract

This project is focused on the implementation of Al strategies for a tailor-made game of multiplayer snake,
inspired by the online hit Slither.io. We successfully implemented reinforcement learning (Q-learning) and
adversarial-based (Minimax, Expectimax) strategies. For the former, we investigated methods to speed-up
the learning process as well as the impact of the agent’s opponents during learning trials. For the latter,
we focused on increasing the run-time performances by designing threat-adaptive search depth functions
and other pruning methods. Both approaches largely outperformed our hand-coded baselines and yielded
comparable performances.

Keywords: multiplayer snake, adversarial tree, reinforcement learning, adaptive search depth

1 The Game

The proposed Multiplayer Snake game is an extension to the Snake game inspired by the popular online game
Slither.io. In short, multiple snakes move on a 2D grid on which candies randomly appear, and grow by 1
cell every second candy eaten. Snakes die when their heads bump into borders or other snakes. This adds an
interesting complexity to the classic, as snakes can try to make others collide with them. The game stops when
a single snake remains or when the clock runs out, whichever comes first. The final score depends on the length
at the time of death or at the end of the game and the number of snakes still alive at the time of death:

1

SCORE = Length
ength X # Snakes Remaining

For full statistics, we also compute the percentage of wins and the average length at the end of the game (in
general or only when the agent won). The other rules are:

e Candies appear according to a predefined appearance ratio;

e Snakes can cross their own tail, but not twice in two time steps. On the second successive crossing, the
snake dies;

e A snake’s head cannot move backwards;
e When a snake dies, every cell in its tail transforms into a special candy worth 3 regular candies.

A screen shot of the game is shown in [II White tiles are heads, bold colored tiles are tails, bronze tiles are
candies and golden tiles are special candies created from a dead snake’s body.

2 Motivation

The main motivation behind this project is to assess the relative performance of adversarial versus reinforcement
learning strategies and compare snake behaviors inherent to each. In addition, this game setting comprises a
number of challenges, such as simultaneous player actions, multiple opponents and large state spaces. Finally,
there is no single conspicuous objective, thus making it difficult to predict the opponents’ best moves in search
trees and makes RL policies very dependent on the strategies used for training.

Figure 1: Screenshot of game interface

3 Related Work

There has been some work done on the traditional Snake game, mostly based on path finding. We found two
projects which apply reinforcement learning techniques (Q-learning and SARSA) to implement an intelligent
agent E]El We also found a project addressing the multiplayer setting EL yet the intelligence in the agent’s
strategy consists only of a path-finding algorithm.

4 The Model

We represent a snake as a list of coordinate tuples of the cells making its head and tail, with the head cell at
the head of the list. For computation time reduction on large grids, we also store an array of integers indicating
for each cell if a snakes is present and if it has crossed its tail there. We define a state by a dictionary of all
snakes alive, a list of all candy positions, and the current iteration number. The goal of our project is to learn
optimal policies, therefore the inputs are the game states and the outputs are the agents’ actions (straight, turn
left, turn right). We implemented all our code in Python and it is available on Github E}

5 Baselines: Static Strategies

We have implemented several basic strategies that will serve as baselines. It is possible for different snakes to
follow different strategies.

e Smart Greedy. Snakes move towards the closest candy, but move randomly to unoccupied cells if an
opponent is in the way;

e Opportunist. Improving again, snakes now move towards the candy closer to themselves than to all
opponents;

e Random. Snakes move randomly, only avoiding grid boundaries.

We ran 1000 simulations of the 3 baselines together on a grid of size 20 and max_iteration = 1000, and
reported the results in table

Our first oracle was a human player with moderate game experience. Over the course of 20 games against
baseline strategies, the human player won 75% of the time, with a final score ranging from 50 to 100. Because
of the high variance in the final human score, we set our score oracle to be the number of iterations, assuming it

Thttp:/ /spranesh.github.io/rl-snake/

2http:/ /cs229.stanford.edu/proj2016spr/report/060.pdf
Shttp://isnake.sourceforge.net /docs/
4https://github.com/sds-dubois/snake.ai

https://github.com/sds-dubois/snake.ai

Strategy Random | Smart Greedy | Opportunist
Wins (%) 21 25 38
Avg Points if Win 8 83 81
Avg Points @ End 11 63 66
Avg Score 5 41 47

Table 1: Baselines statistics with a 1000 simulations on a grid of size 20

eats a candy at every time step. This is slightly inferior to the maximum obtainable score since special candies
come into play. Nonetheless, eating a candy at every time step is already extremely unlikely and would only
result from shear luck. Hence, our oracle is 75% win and 318 points (the average number of iterations for
baseline versus baseline games).

6 Adversarial Approaches

6.1 Settings

Our first approach to artificial intelligence consists of adversarial strategies. First of all, for adversarial methods
like Minimax and Expectimax to function properly, we need to handle synchrony. In the case of Minimax,
this is done by learning the a priori worst case scenario, i.e. the strategy assumes other snakes have already
moved to the most menacing position. Thus, the snake will be more cautious than deemed necessary in a real
synchronous setting. In the case of Expectimax, opponents are seen as random, and therefore the agent assumes
it plays first.

In this game, it can be unclear what the opponents’ agendas are. Are they attempting to trap other snakes or
achieve good scores by eating candy, minding their own business? One thing is certain, dead snakes provide the
highest reward, and the special candies created are beneficial for the remaining snakes. However, every snakes’
primary objective is fundamentally to eat a maximum number of candies, which can easily be done without
interfering too much with opponents. This ambiguity justifies both Minimax and Expectimax strategies: the
former performs well when opponents are ”offensive” and the latter may lead to adventurous exploration, which
is better if opponents demonstrate a peaceful behavior.

Given the large state space, the number of moves (3) and adversaries (at least 3), it is critical to optimize
computations. In this line of thought, Alpha-beta pruning was used for the Minimax agent, but was still slow.
A simple Minimax agent with constant speed was also implemented to assess the reward/computation time
trade-off of acceleration.

6.2 Evaluation Functions

Let’s first define the maximum points a snake can achieve on a given grid. Because special candies are worth 3
points, we have:
MazxPoints = 3 x Grid Size”

We then define the naive evaluation function as:

MaxPoints if snake wins
NaiveFEval(snake) = —MaxPoints if snake loses
Length(snake) otherwise

To account for the advantage of being close to candies, we use the greedy evaluation function that slightly
penalizes a long distance to the closest candy:

MiNceCandies d(head, C)

GreedEval = NaiveEval 2 x Grid Size

Minimax Depth Strategy | Depth 1 | Depth 2 | Smart Coward | Claustrophobic | Survivor
Wins (%) 44 59 61 59 63
Avg Computation Time 1.4 28.8 4.8 5.8 5.2
Avg Final Score 38 54 58 55 60

Table 2: Rate of victory, average final score and average computation time for different depth strategies when

doing 1000 simulations of Minimax with radius 2 against Opportunist and Smart Greedy.

Expectimax Depth Strategy | Depth 1 | Depth 2 | Smart Coward | Claustrophobic | Survivor
Wins (%) 29 31 32 31 31
Avg Computation Time 1.3 31.8 14 1.5 1.4
Avg Final Score 20 22 21 21 21

Table 3: Rate of victory, average final score and average computation time for different depth strategies when
doing 1000 simulations of Expectimax with radius 2 against Opportunist and Smart Greedy.

6.3 Adaptive Search

Due to a large state space, a large number of moves and adversaries, the search computations are very time-
consuming and thus we cannot look deep into the Minimax/Expectimax trees. However, in most situations,
most opponents are not a threat to the agent and can be considered immobile. This is equivalent to not
considering them at all in the search tree. The best search depth can also depend on the state: when a snake is
small, far from its opponents and far from the borders, just going to the closest candy is likely to be optimal.
These two ideas can be implemented in an adaptive search function which returns the list of opponents to
consider and the depth of the tree when given a state and an agent. We have considered 4 different strategies:

e Coward: If the head of the snake is too close to a snake, we increase the depth. We only consider
opponents in the vicinity;

e Smart Coward: Improvement on Coward. We now consider an opponent only if its head is close to the
agent’s head;

e Claustrophobic: Improvement on Smart Coward. We now increase the depth if the agent’s head is close
to the border of the grid;

e Survivor: Improvement on Smart Coward. We now increase the depth when the agent’s tail is curled up
around its head. Formally, we define the compactness of a snake for given radius p to be:

H c € tail | d(head,c) < p H
p?—1

compactness (snake) =
and we increase the depth when the compactness goes beyond a given threshold (0.5 or 0.6).

6.4 Results and Discussion

In total, we ran 1000 simulations of each strategy against Opportunist and Smart Greedy snakes on a grid of
size 20, and reported the statistics in table [2] and [3] We report the final score as well as the rate of victory, the
average computation time of game and the average length — when the snake wins and in general. We compare
different depth strategies for Minimax and Expectimax with a radius of 2. We also report the full results for the
best adversarial strategy in table |4l It is interesting to see that the best adversarial agent is longer on average
at the end than when it is winning. This suggests that its opponents tend to die too early.

We observe that Greedy Minimax outperforms both Smart Greedy and Opportunist. The snakes following
this strategy tend to stay a little shorter, which enables them to survive longer in a crowded grid. Because of its
cautious approach, the strategy leads to few draws, with an estimated 10% of games ending with a head-to-head
collision.

Table 4: Full report for the best adversarial strategy:

compactness 0.5

Strategy Minimax | Smart Greedy | Opportunist
Wins (%) 69 9 18
Avg Points if Win 79 84 91
Avg Points @ End 81 59 71
Avg Final Score 66 28 40

Minimax Survivor Radius | 1 2 3 4 5
Wins (%) 36 | 63 | 63 | 69 | 66
Avg Computation Time 2713943 |76| 148
Avg Final Score 27 | 60 | 60 | 66 | 62

Table 5: Influence of the radius with a compactness of 0.5 for Minimax Survivor
Minimax Survivor Compactness | 0.4 | 0.5 | 0.6 | 0.7 | 0.8
Wins (%) 61 | 63 | 67 | 65 | 62
Avg Computation Time 45 (43| 43| 4.0 | 4.3
Avg Final Score 61 | 60 | 63 | 57 | 59

Minimax with Survivor depth function, radius 4 and

Table 6: Influence of the compactness with a radius of 3 for Minimax Survivor

Strategy Minimax rad 2 | Expectimax rad 2 | Minimax rad 1 | Expecti. rad 2 | Mini. rad 2
Wins (%) 53 18 24 37 36
Avg Points if Win 45 90 72 118 129
Avg Points @ End 55 56 56 105 109
Avg Final Score 37 32 32 74 78

Table 7: Minimax against Expectimax. On the right 1vsl and on the left one Expectimax against two Minimax
with different radius

Expectimax also outperforms both baselines. Compared to Minimax, it leads to more draws due to its
adventurous approach. The average number of iterations is also lower confirming that Expectimax tends to die
quicker.

The adaptive depth approach allows us to keep a minimal depth of 2 with a reasonable run-time and to
explore the search tree deeper in more complicated situations. In a run-time similar to a depth 1 agent, we can
slightly improve both the rate of victories and the average final score. Tuning the radius leads to a trade-off
between computation time and final score (or rate of victory) (see table [5]). Increasing the radius does not
lead to better results beyond 4, meaning that it provides sufficient local information to choose optimal move.
Finally, because the adaptive depth acts locally, its is relatively independent of the size of the grid (a longer
grid still implies longer snakes which would make the process slower only when they are taken into account).

We can see on table [6] that changing the compactness does not change the computation time significantly.
The optimal value seems to be around 0.6. We find interesting that for compactness thresholds inferior to 0.6,
the performance does not increase.

On table [7] we observe that on 1vl, strategies tend to perform similarly with a lot of draws due to the
adventurous behavior of Expectimax. With 3 agents (2 Minimax with different radii and 1 Expectimax),
Minimax with radius 2 performs slightly better. This is principally because it wins much more often. However,
Expectimax still performs well because it is generally much longer when it wins (more variance in its score).
This can be due to its riskier but greedier approach, i.e. it tends to aim for clusters of candies and often kills
and eats opponents.

6.5 What Could Be Improved?

Naturally, some improvements could still be made to the current strategies.

e Adaptive evaluation functions. They would be based on the current score to reflect the importance of
winning and eating candies;

e Better evaluation functions. We could assign a bonus to various situations, such as proximity from other
snakes tails, proximity of tail form other heads, special candies or clusters of candies. It could also penalize
being in a corner, as we know corners are deadly;

e Improved evaluation functions with TD learning.

e Situation checks for Expectimax. We can fix the disadvantages of a ”"best case scenario” approach by
adding a check for situations that could yield immediate death. For example, the AT could avoid head-to-
head collisions, which are one of the main causes of draws;

e Layer adaptive depth. We could choose search depths while searching through the Minimax tree instead
of at the head (trade-off between computation time and optimal strategy).

7 Reinforcement Learning

7.1 Settings

We have implemented AI agents by learning a Q-function with linear function approximation, i.e. Q(s,a) =
0 - ¢(s,a). We used the following indicator features:

e Agent’s head x and y position;
e Indicator coding if the agent is trapped;

e Indicator coding if the agent is crossing its tail;

Relative agent tail positions;

Relative candy positions and their value;
e Opponents’ head and tail positions relative to agent.

These last features are only considered if within Manhattan distance 11 or less of the agent’s head. In
addition, these are computed exclusively considering the agent’s position after taking action a.

The Q-function is learned by stochastic gradient descent over a large number of trials, while the agent is using
an e-greedy exploration strategy. When not otherwise specified, we train the RL agent with the same opponents
as the ones it is tested against.

A key item in our RL settings is the way rewards are attributed to the agent while learning the Q-function.
We explored a few options and finally settled on attributing rewards following the game’s rules (i.e. candy’s
value if eaten and a bonus/penalty of 10 points when winning/dying).

Another important modeling element was the discount factor. When using v = 1, we found the learned
strategy was to wrap around itself: the snake would not grow and thus be impossible to kill. In contrary, with
a discount factor lower than 0.6, the learned strategy performed poorly, most likely because the snake would
be indifferent to dying if it was to eat a candy. We obtained good results for v = 0.9 and this is the discount
factor used for the results presented below.

7.2 Eligibility Traces

Eligibility traces is an adaptation of the classic Q-learning update method. When observing (s, a,r, s"), we not
only update the weights with respect to (s,a) but also for all previous (s_;,a—;) as follows:

A+ Q(s,a) — (r + 7 * max Q(s', a/>)
0 + 0 —nA ¢(s,a)
0 0 —nn\)'A ¢(s_ia_;) Vi>1

Strategy Smart Greedy | Opportunist | RL
Wins (%) 12 22 63
Avg Points if Win 97 96 65
Avg Points @ End 61 70 73
Avg Final Score 31 42 56

Table 8: Detailed statistics for configuration 1

where s_; denotes the i*" last state visited. In other words, the observed difference A is propagated back
to previous state with an exponentially decreasing factor A\. Note than when using an e-greedy exploration
strategy, we perform such updates only for the history of states visited based on a greedy decision.

Eligibility traces are suppose to speed-up the learning phase since it will update @ for previous state and not
only based on the generalization contained in the representation ¢. This is especially suited to handle delayed
rewards such as in games. However our game is special since it has short-term rewards (candies) and not only
long-term ones (final score).

We experimented with different values of A and found that this could yield better results for mid-range
number of learning trials, when it was quite small (A € [0.1,0.2]). When using a small number of learning trials,
its influence was not clear, which could be explained by the noise in the updates and lack of time to average
it. And with large number of learning trials, A had to be smaller and smaller to be useful. Our intuitions is
that again, eligibility traces can introduce some noise in the updates, and if the number of trials is large enough
the classic update suffices to compute expected utilities. In the next section, we therefore present results for
weights learned without eligibility traces since for equivalent performances, we preferred to increase the number
of learning trials in favor of fine tuning A.

7.3 Results and Discussion

In this section we simply refer to a ”Minimax Survivor with radius 2 and compactness 0.5” as Minimax. We

chose to train an RL agent against this Minimax agent because it seemed a good trade-off between performance

and computation time. In section |8 however, we let trained RL agents play against better Minimax strategies.
We experimented with the following combinations of opponents to train the RL agent:

e Config 1: Smart Greedy, Opportunist;

e Config 2: Smart Greedy, Minimax;

Config 3: Opportunist, Minimax;

Config 4: Smart Greedy, Opportunist, Minimax;
e Config 5: Smart Greedy, two Minimax;
e Config 6: Opportunist, two Minimax.

Configurations 4a and 4b differ by the number of learning trials, 10,000 and 20,000 respectively. For all other
configurations, we used 10,000 learning trials. All tests were made with 2,000 simulations.

Figure [2] presents the average final score obtained by each player in each configuration. We first notice
that the RL agent has the highest final score except for configuration 3. Second, we observe that as soon as
we introduce a Minimax player, the RL agent’s final score increases considerably. This happens because the
Minimax strategy outperforms both baselines and therefore the game can last longer, enabling the RL agents
to grow more. Table [§] presents the detailed statistics of each player in configuration 1. We indeed observe that
the RL agents wins most of the games (63 %) but does not have enough time to grow. Surprisingly, in this
configuration, it is on average smaller when it wins that in general. This may be explained by the fact that it
is better at avoiding the other snakes than its own tail.

Tables [9] and [I0] present the detailed statistics for configurations 4a and 4b. Recall that both differ only by
the number of learning trials (10,000 vs 20,000) and that the RL agent was trained against the same opponents
(Smart Greedy, Opportunist, and Minimax). As expected, increasing the number of learning trials yielded
better scores when playing against the same opponents. Between both sets of statistics, the main difference is

Average score
80

7

5

4

3
0

Config 1 Config 2 Config 3 Config 4a Config 4b Config 5 Config 6

=]

1]
L]

L]

L]

L]

=]

et
=]

B Smart Greedy M Opportunist B Minimaxl BMinimax2 BERL
Figure 2: Average score over 2,000 simulations of each strategy for different game configurations

the average points the RL agent has when winning (which increases from 118 to 127). Our intuition is that the
overall behavior of the RL agent does not change much, since average point at the end does not vary much,
but that it gets better at playing when it has a long tail. Finally, we tested each learned strategy against
Smart Greedy and Opportunist, and results are reported in Table[TT} First, we notice it is difficult to correlate
these results with those in Figure [2| (i.e. the performance of the RL agent when tested against its opponents
used to train it). In particular configuration 3 did not seem promising at first but performs well against the
two baselines. In addition, training against Minimax seem to benefit in general but does not yield a clear
improvement (e.g. for configurations 2 and 5).

Hence, we can conclude that our RL algorithm enables us to learn good strategies that perform well in
comparison to other baselines and Minimax, in a variety of configurations. However we also observe that the
opponents used at training time can have a relatively important influence on the learned strategy’s performances,
depending on the opponents at testing time. This is logical since the best strategy should depend on the other
players’ strategy, as it is wise to be cautious if the opponent is aggressive and reversely.

Strategy Smart Greedy | Opportunist | Minimax | RL
Wins (%) 7 14 39 36
Avg Points if Win 100 109 125 118
Avg Points @ End 53 70 96 106
Avg Final Score 23 36 69 71

Table 9: Detailed statistics for configuration 4a

Strategy Smart Greedy | Opportunist | Minimax | RL
Wins (%) 8 12 38 37
Avg Points if Win 107 106 125 127
Avg Points @ End 55 66 97 107
Avg Final Score 25 34 69 74

Table 10: Detailed statistics for configuration 4b

Configuration Config 1 | Config 2 | Config 3 | Config 4a | Config 4b | Config 5 | Config 6
Wins (%) 63 61 62 60 63 61 64
Avg Points if Win 65 68 70 67 70 67 69
Avg Points @ End 73 76 78 77 78 75 I
Avg Final Score 56 57 59 58 60 56 59

Table 11: Performances of an RL agent playing against baselines, when learned against different opponents

7.4 What Could Be Improved?

Below are a few of things we think would have been interesting to try.

8

e Rotational invariance. Since we play on square grids, the strategy should be invariant by any 90° rotation.

So we could extract the features ¢(s, a) by first rotating the board so that the snake is moving up. This
would reduce the state space by a factor 4, thus increasing the ratio performance - number of learning
trials.

Non-linear Q-function. Although it makes sense to model @ has a linear function of our indicator features,
we feel that some decisions should take into account more abstract elements. For examples, an agent should
steer left if there are several obstacles to its right side but not on its left side, or move according to the
shape of the opponents’ tails. In this mindset, we could have learned @) using small neural networks, which
would have allowed more complex functions. Moreover, SGD updates would have been equally simple,
making them well suited for our Q-learning framework.

Handcrafted short-term goals. We would have liked to implement these through the reward function used
in the learning phase. This could have helped avoiding specific scenarios or forcing it to learn specific
behavior. For example, with our current implementation it is difficult to learn to avoid getting into tunnels
where it gets stuck. In addition, we did not observe any aggressive behavior, such as trying to surround
an opponent to kill it, since such scenarios are highly unlikely to happen by chance in training. Therefore,
we could give partial rewards when partially surrounding opponents to incite such tactics.

Learning schema. We observe that the quality of learned strategy depends on the opponents trained
against. Therefore, we would have liked to study this more in-depth as well as designing a learning
schema. For example, we could learn the weights by training repeatedly against different opponents and
different combinations of them. We could even design specific handcrafted strategies just for the RL agent
to play against and learn, such as one that aims for head-to-head collisions to teach our RL agent how to
avoid them.

Ultimate Match Up

In this section, we make our best Minimax strategy (Survivor with radius 4 and compactness 0.5) compete
against the best learned RL one (configuration 4b).

Table [12] presents the statistics for duels between these two. Note that when using Config. 1 for the RL

strategy, the average final score was only 79 (whereas Minimax’s score was the same) - it thus appears crucial
to train against the Minimax agent.

Table[L3]shows the results when we add two baseline players: Smart Greedy and Opportunist. The Minimax

agent obtained the highest final score once again, but recall that the RL agent was trained against a simpler
Minimax version (Survivor with radius 2).

Strategy Minimax RL
Wins (%) 52 45
Avg Points if Win 133 125
Avg Points @ End 130 126
Avg Final Score 100 91

Table 12: Detailed statistics - best Minimax vs. best RL

Strategy Smart Greedy | Opportunist | Minimax RL
Wins (%) 7.2 11 42 35
Avg Points if Win 107 107 129 131
Avg Points @ End 54 67 106 109
Avg Final Score 24 33 7 74

Table 13: Detailed statistics - baselines vs. best Minimax vs. best RL

9 Conclusion

In the scope of this project, we developed a game of multiplayer snake inspired by the online sensation Slither.io,
implemented reinforcement learning and adversarial-based Al strategies, and finally analyzed their relative
performance. Computationally greedy by nature, our adversarial algorithms were sped up by the use of pruning
and threat-adaptive search depth and locally trimmed search spaces. On the other hand, reinforcement learning
(RL) parameters and features were tuned to obtain optimal policies. From extensive learning tests, we noticed
that the RL policy depends greatly on the opponents against which it is trained, as their behaviors vary
significantly. We attribute this to the absence of a clear objective, or in other words a fuzzy definition of
victory, which is clearly one of the challenging aspects of the game. In the end, with our current effort and
available computation power, we conclude that the best agent follows a Minimax strategy with a Survivor depth
function of radius 4 and a compactness parameter of 0.5. It managed to slightly surpass our best RL agent in
an ultimate four player match up. In the future, we wish to add snake acceleration to the game and implement
non-linear function approximation for Q-learning and TD-learning to allow and incite aggressive encirclement
tactics observed in human play.

10

	The Game
	Motivation
	Related Work
	The Model
	Baselines: Static Strategies
	Adversarial Approaches
	Settings
	Evaluation Functions
	Adaptive Search
	Results and Discussion
	What Could Be Improved?

	Reinforcement Learning
	Settings
	Eligibility Traces
	Results and Discussion
	What Could Be Improved?

	Ultimate Match Up
	Conclusion

