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selon les règles bibliographiques préconisées.



Deep Mining : Copula-based Hyper-Parameter Optimization

for Machine Learning Pipelines

by

Sébastien Dubois

Abstract

Every machine learning model has several hyper-parameters that need to be carefully chosen for
they can hugely impact its quality. While grid search was the first automatic approach to tackle
this problem, random search has proved to be much faster for such tasks. Recently some sequential
models have been proposed in order to leverage the information acquired during the search process.
We build our work upon such a technique which models the performances yielded by the hyper-
parameters with a Gaussian Process (GP).
First, we present a novel non-parametric approach for Gaussian Copula Processes (nGCP), and use
it for hyper-parameter optimization. In addition, we present a framework to auto-tune machine
learning pipelines (MLP). Specifically, we consider noisy performance evaluations which speeds up
the search and paves the way for parallel designs.
We finally demonstrate that nGCP outperforms GP for regression. We also test nGCP-based
hyper-parameter optimization techniques on two classic problems involving text data and images.
We show that even with noisy estimations our techniques outperform random search, and that
nGCP-based methods are a bit faster than GP-based ones.

Résumé

Tout modèle de Machine Learning (Apprentissage Automatisé) possède des hyper-paramètres qui
doivent être choisis avec soin, car ceux-ci peuvent nettement en impacter la qualité. Après la
méthode du grid search (recherche sur une grille) et de la recherche aléatoire, déjà plus efficace,
des modèles séquentiels ont été proposés afin de tirer profit de l’information acquise durant l’ex-
ploration d’hyper-paramètres. Le travail présenté dans ce rapport se fonde sur une telle méthode,
qui modélise les performances des hyper-paramètres par processus gaussien (GP).
Nous présentons d’abord une nouvelle approche non-paramétrique du Gaussian Copula Process
(processus de copule gaussienne, nGCP), et l’utilisons dans le cadre de l’optimisation d’hyper-
paramètres. Nous présentons également une méthode pour ajuster automatiquement les hyper-
paramètres d’un modèle complet de Machine Learning. Plus précisément, nous considérons des
évaluations bruitées de performance, ce qui accélère l’exploration et facilite la transition vers un
système parallélisé.
Enfin, nous démontrons que les nGCP sont plus performants que les GP en régression. Nous avons
également testé l’optimisation d’hyper-paramètres par nGCP sur deux problèmes classiques impli-
quant des données textuelles et des images. Nous montrons ainsi que ces méthodes séquentielles,
même avec des observations bruitées, sont largement plus performantes que la recherche aléatoire,
et qu’elles sont légèrement plus rapides lorsqu’elles reposent sur un nGCP plutôt qu’un GP.
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Chapter 1

Introduction

1.1 The Machine Learning Pipeline

The field of Machine Learning lies at the intersection of Computer Science and Statistics and stud-

ies how machines can acquire knowledge, ie. provide insights from some phenomenon and predict

other phenomena based on its experience. According to Tom Mitchell in [1], Computer Science

aims at building machines that can solve problems while Statistics aim at inferring from data.

Finally he described the Machine Learning as the field which tries to answer the following question:

”How can we build computer systems that automatically improve with experience, and what are

the fundamental laws that govern all learning processes ?”

The applications of machine learning are infinite but in practice we can often observe a general

pipeline:

• Aggregate real-world data

• Extract features from the data

• Design a predictive model

• Predict, classify, evaluate ...

While real-world data can be very different in nature (text, images, databases, ...), statistical

models usually need real vectors as input. This conversion step is called feature extraction or feature

engineering and basically aims at representing the original data as vectors in Rn. Of course this

step should be done carefully as it will considerably impact the ability to build a powerful statistical

model.

Designing a predictive model consists in choosing a model and fitting it to the data. This is

generally done by minimizing a cost function. For example, linear Support Vector Machines (SVM)

is a model that tries to best separate the data with hyperplanes, and fitting an SVM means defining

the hyperplanes (see Figure 1-1). Once this is done, one can for example predict the class of a new
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Linear SVM

Figure 1-1: Two-class linear SVM in a two-dimensional space.

point in the input space given its position with regards to the hyperplanes.

So the main work of a data scientist, when s/he has the data and a problem to tackle, is to

design such a pipeline, which means find out the best features to extract and which classification

model to use. However such models actually have several parameters that need to be set: these are

called hyper-parameters to distinguish them from the parameters that are automatically set during

the fitting process. We can even think as each model (eg. choosing a linear SVM against Random

Forests) as a categorical hyper-parameter. These hyper-parameters can have a huge impact on the

prediction accuracy and are usually set by an expert hand after a lot of testing.

Figure 1-2 shows an example of a pipeline and some hyper-parameters that can be tuned. This

refers to a classic machine learning problem of handwritten digits recognition using the MNIST

dataset. So here the real-world data are images of handwritten digits and the aim is to predict

which digit is written given the image. We propose a pipeline in which we first blur the data, reduce

the dimension by Principal Component Analysis (PCA), and finally classify through a polynomial

SVM (see Appendix A for details on these techniques).

1.2 Motivation

We cannot emphasize enough that tuning a machine learning pipeline is a difficult and time-

consuming task. Most of the time the dependencies between the hyper-parameters and the pipeline’s

performances are hard to understand and thus there is high chance the user does not take the most

benefits of its pipeline. A solution could be to test all hyper-parameter combinations possible.

This is called grid search: discrete values are set for each categorical/integer/floating point hyper-

parameter, thus making a grid over the space of hyper-parameter sets, and each point of this grid

is tested. However this grid growths exponentially and that makes this method almost practically
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A Machine Learning Pipeline

Figure 1-2: A pipeline example and some tunable hyper-parameters for the handwritten digits
recognition problem.

unfeasible. For example with the pipeline in Fig. 1-2, we propose to test 2, 5, 26, 4, 4 values

for respectively the Gaussian blur kernel size, standard deviation, PCA dimension, SVM kernel

degree and gamma coefficient, which makes 4160 hyper-parameter sets. Testing a hyper-parameter

set can takes around a minute, so the time needed to test all the possible values is about three

days (and we must keep in mind that this is only one pipeline example that does not have many

hyper-parameters).

In [2], Bergstra and Bengio show that random search is much faster than grid-search for hyper-

parameter optimization, and recommend to investigate on adaptive search, ie. search models that

take into account previous tests to decide which part of the space to explore. Such sequential

techniques have been studied in [3, 4, 5] and compared in [6]. However to the best of our knowledge

there has not been much effort put into the design of an automated machine that would tune a

whole machine learning pipeline; most of the previous work focuses on tuning the hyper-parameters

of classification algorithms. We are thus interested in building such a machine. This goal can be

compared to the work of Will Drevo [7] who designed a machine that automatically tests several

classification models and hyper-parameter sets in a sequential manner, in order to find the best

model.

In our opinion, auto-tuning the whole machine learning pipeline has not been done yet be-

cause the feature extraction part is the most time-consuming and present here the most significant

challenge. It is indeed now common to deal with several millions of images representing hundreds

of gigabytes of memory, and each of them must be processed to extract some features like SIFT

descriptors [8]. So such an automated machine should take the most advantages of current hyper-

parameter optimization methods but also include pratical considerations, like thinking of a parallel

design.

Regarding the hyper-parameter optimization technique, we focus on Gaussian Process (GP)-
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based methods such as [9, 3]. We are also interested in Gaussian Copula Processes (GCP) [10] for

they should present better modeling power than GP. Thus our main goal was to:

• Design a GCP-based hyper-parameter optimization technique

• Use this technique to auto-tune machine learning pipelines (MLP)

1.3 Contributions

Our main contributions are the following:

• Design a new regression technique based on GCP that we call non-parametric GCP (nGCP)

• Design an auto-tuning machine for machine learning pipelines based on noisy performance

estimations

• Build this machine through nGCP modeling

• Compare several nGCP-based hyper-parameter optimization methods for machine learning

pipelines on two real-world problems : on sentiment analysis and handwritten digits recogni-

tion.

14



Chapter 2

Non-Parametric Gaussian Copula

Processes (nGCP)

In this section, we first recall the fundamentals of Gaussian Processes (GP) for machine learning

and present previous methods used to design Gaussian Copula Processes (GCP). We then introduce

our novel non-parametric approach to GCP (nGCP) and finally propose a latent model for nGCP

(nLGCP).

2.1 Gaussian Process (GP)

This is a brief review of Gaussian Processes for regression; see Rasmussen and Williams [11] for a

complete overview of GP.

The Gaussian Process in Machine Learning is a particular prior to perform Bayesian learning.

Specifically if the goal is to predict the values of a function f : X → R, this means that we model f

such that for any finite set of N points xn in X , {f(xi)}Ni=1 has a multivariate Gaussian distribution

on RN .

The properties of such a process are determined by the mean function m : X → R and the

covariance function k : X × X → R :

m(x) = E[f(x)] (2.1)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (2.2)

Note that these functions depend on x only because x is a proxy to index the random variable f(x).

Usually the mean function is fixed as the average of the known f values (on the training data),

so we will take it to be zero assuming the data are centered. The covariance function could also

be fixed but most of the time it is parametrized and the values of its parameters are learned while

fitting the Gaussian Process to the data. This last step can be done through Maximum Likelihood

Estimation [11].

In the Bayesian framework predictions are simply made by looking at the posterior distribution,
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which is the prior conditioned on the training data (x̄t, f̄t). Thus the predicted value f∗ of the

function f at point x∗ would be:

f∗ = E( f(x∗) | x̄t, f̄t ), (2.3)

where :

f(x∗) ∼ N ( k(x∗, x̄t)K
−1
t f̄t,

k(x∗, x∗)− k(x∗, x̄t)K
−1
t k(x̄t, x∗)). (2.4)

and Kt = k(x̄t, x̄t) is the square covariance matrix of the training data.

2.2 Gaussian Copula Process (GCP)

The Gaussian Copula Process, as introduced in [10], is a prior based on a GP that can model more

precisely the multivariate distribution of {f(xi)}Ni=1. This is done through a mapping

Ψ : R→ R

that transforms f into a new function g to which we set a GP prior:

g(x) = Ψ ◦ f(x) (2.5)

g(x̄) ∼ N (0, k(x̄, x̄)) (2.6)

where g(x̄) denotes the vector [ g(x1) ... g(xN ) ]T .

By doing this, we actually change the assumed Gaussian marginal distribution of each f(x) into

a more complex one. Precisely, the Gaussian prior on g(x) yields the prior for f(x) given by the

following cumulative distribution function:

F (t) = Φ ◦Ψ(t), (2.7)

where F (t) =P(f(x)≤ t) and Φ is the standard univariate Gaussian cumulative distribution func-

tion.

So far in the literature, eg. [10, 12], a parametric mapping is learned so that g(x) is best modeled

by a Gaussian Process. In [10], Wilson and Ghahramani propose to parametrize Ψ−1 by {aj , bj , cj}
such that:

Ψ−1(x; {aj , bj , cj}Kj=1) =
K∑
j=1

ajlog
(
ebj(x+cj) + 1

)
, aj , bj > 0. (2.8)

In [10] they are interested in predicting the values of a positive function f . So in the general case
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Figure 2-1: Yielded probability density functions for multiple trials with a parametric GCP, where
the mapping function is defined by eq. (2.9). The function to model is a custom function shown in
blue in Fig. 2-3.

we can add another variable m:

Ψ−1(x; {aj , bj , cj}Kj=1,m) =
K∑
j=1

ajlog
(
ebj(x+cj) + 1

)
−m, m, aj , bj > 0.

Thus for K = 1 we have :

Ψ(t) =
log(e

t+m
a − 1)

b
− c, m, a, b > 0. (2.9)

However, we have found that such a mapping was unstable: for many trials on a same dataset,

different mappings where learned, as shown in Fig. 2-1. Moreover the induced univariate distribu-

tion for f(x) was most of the time almost Gaussian and the parametric mapping could not offer a

great flexibility. We indeed see in eq. (2.8) that for K = 1, if bx >> bc, 1, then Ψ−1(x; a, b, c)∼ abx,

ie. the mapping is linear and the GCP is actually a GP.

Thus we introduce a novel approach where a marginal distribution is learned from the observed

data through kernel density estimation [13] of F . Then the mapping Ψ is numerically computed from

equation (2.7), so that the observations of the training data g(xt,i) have a Gaussian distribution:

Ψ(t) = Φ−1 ◦ Fest(t). (2.10)

As the mapping function is learned in a non-parametric manner, we call this novel approach

Non-Parametric Gaussian Copula Process and note it nGCP.
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function shown in blue in Fig. 2-3.

2.3 Non-Parametric Latent GCP (nLGCP)

As said in section 2.1, the prior mean of a Gaussian process is usually fixed as the empirical mean

of the observations f(xt,i). However in the context of hyper-parameter optimization, we can easily

feel that there should be some region where the hyper-parameters would be rather good and others

where they would be rather bad. Thus it appears that it may be convenient to set a different mean

for the prior depending of the region in which the hyper-parameter is. Regarding the GP, scientists

would easily argue that this would not have much impact as the role of the covariance function is

exactly to induce such smoothness. However with GCP we do not only fix the mean function but

the mapping function. We recall that the mapping function reflects the distribution of the data.

Thus with nGCP a latent model aims at learning several distributions of f(x) over the input space.

In particular we think this can have a positive influence when trying to locate the good regions to

explore in a Bayesian optimization process.

Thus we introduce a non-parametric Latent Gaussian Copula Process prior(nLGCP), where the

mapping function depends also on the input x. Intuitively the goal is to include in the prior not

only the distribution D of f(x) on the entire space X but the distributions D1, ..., Dk of f(x) on

k regions of X . This way, we design a prior that really depends on x (whereas in the previous

equations x was only an index to denote the random variable f(x)).

To design the nLGCP prior, we are looking for a mapping function that depends on the input

x and output f(x),

Ψ : X × R→ R.

To this purpose, the training data {(xi, f(xi))} are clustered in X ×R ⊂ Rm+1 using K-means.

For each cluster k a mapping Ψk is learned as described in section 2.2. Then for each x in X , the
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final mapping Ψ is computed as:

Ψ(x, y) =
∑

αk(x).Ψk(y), (2.11)

where :

αk(x) = exp(−s
∑

(
dk
σk

)2) (2.12)

dk = distX (x, ck) (2.13)

σk = stdX (Ck) (2.14)

and s is a smoothing coefficient, ck is the projected center of the cluster Ck on X .

2.4 Predictions with n(L)GCP

In this section, we do not distinguish Ψ for nGCP or nLGCP when this is useless in order to simplify

the equations. So with nLGCP we write Ψ to mean Ψ(x∗, t) where x∗ is the point of X where we

want to predict f .

Predictions with GP are straightforward given equations (2.3,2.4) but it is not the case anymore

with n(L)GCP. A faster but approximate way to compute the predicted value of f(x∗) for a given

x∗, is to set f∗ = Ψ−1(g∗) where g∗ is the GP prediction of Ψ ◦ f(x∗) .

For a fully Bayesian prediction of f(x∗) as given by eq. (2.3), for an input x∗, we can recall
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that GP analysis give us the posterior:

g(x∗) ∼ N (µ∗, σ∗)

where µ∗, σ∗ correspond to the detailed expressions of equation (2.4). Thus from equation (2.7) we

get that F∗ = Φµ∗,σ∗ ◦Ψ, where F∗ denotes the predicted cumulative distribution function of f(x∗),

and so the prediction is:

f∗ =

∫ ∞
u=−∞

u.Ψ′(u).φµ∗,σ∗ ◦Ψ(u).du (2.15)

where φµ∗,σ∗ denotes the probability density function of a univariate Gaussian N (µ∗, σ∗).

The particular expression of Ψ in eq. (2.10) for the nGCP prior finally enables us to express

directly its derivative:

Ψ′nGCP (t) =
dest(t)

φ ◦Ψ(t)
, (2.16)

where φ and dest are respectively the probability density function of the standard univariate Gaus-

sian and the one corresponding to Fest defined in section 2.2.

Fortunately we have a similar expression for the derivative of Ψ for nLGCP:

Ψ′nLGCP (x, t) =
∑

cluster k

αk(x).Ψ′k(t) (2.17)

Ψ′nLGCP (x, t) =
∑

cluster k

αk(x).
dest,k(t)

φ ◦Ψk(t)
. (2.18)
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Chapter 3

Tuning a Machine Learning Pipeline

Ultimately we aim at finding the sets of hyper-parameters that yield machine learning pipelines

which should achieve high classification accuracy on whatever test set when trained on (almost)

whatever training set. In this section, we first present the hyper-parameter optimization process,

then explain how we will test a set of hyper-parameters and finally which hyper-parameters to

choose when the process is done.

For simplification purposes, we will write hyper-parameter instead of a set of hyper-parameters,

so that a hyper-parameter is a vector corresponding to the pipeline’s hyper-parameters that we

would like to tune.

3.1 Hyper-parameter Optimization Process

We suppose here that a performance function is given which enables us to test a hyper-parameter

and retrieve an estimation of its quality. Thus we try to find the hyper-parameters that maximize

this function.

We need to train and test an entire machine learning pipeline to estimate the quality of a

hyper-parameter, which takes a lot of time and computations, so this is a particular type of costly

function optimization. The method used follows an iterative process with three steps: model &

predict, select, evaluate.

1. Model & Predict :

Given a set of observations O ={(p̄i, oi)}Ni=1, fit a model to express the correlations between

a hyper-parameter p̄i and the performance induced oi.

Sample randomly {p̄′i}ki=1 in P and predict the performances {o′i}ki=1.

2. Select :

Given an acquisition function a, select p̄′∗ that maximizes a(o′). The goal and the form of

the acquisition function are discussed in section 4.3.
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3. Evaluate :

Compute the performance of the hyper-parameter p̄′∗ and add the result to O.

Each iteration corresponds to exactly one evaluation of the performance function. Usually we

have an amount of time and our goal is to find the best hyper-parameters within this time. Thus we

will refer to this process as the Smart Search process because it aims at sampling hyper-parameters

p in P while maximizing our chance to find good hyper-parameters.

3.2 Noisy performance estimations

In order to speed up the tuning process, but also to make it easily parallelizable, we decided to run

each hyper-parameter test on a random subset d of the whole dataset available D.

A machine learning pipeline can be split into two main components: feature extraction and

classification algorithm. As discussed before, processing a dataset to extract proper features usually

takes a lot of time, and even considerably more than testing a classification algorithm. This means

that we will allow us to test more a classification algorithm rather than the feature extraction

model.

We thus have two layers to nuance: 1) the quality of the feature extraction model depending on

the data, and 2) the quality of the classification algorithm depending on the transformed data. To

nuance the first layer we could for example split the dataset d before learning the representation

and then extract the features on the rest. Or we could sub-sample several d from D at each hyper-

parameter test. But this would yield too many computations and we decide instead to model the

evaluation as noisy performance estimations.

Precisely, given the data D of size sD and a sub-sample size sd < sD we test the hyper-parameter

p̄ by the following method:

• Sub-sample data d of size sd from D

• Extract the features from d according to p̄

• Perform k-fold cross-validation on d with a classification algorithm given by p̄

• Return the k performance estimations

3.3 Ranking the hyper-parameters

We described in section 3.1 the generic process used, and in the former section how we evaluate the

quality of a machine learning pipeline, and here we discuss how we can select good hyper-parameters

based on this.
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Performance Evaluation for ML Pipelines

Figure 3-1: Method used to estimate the quality of a hyper-parameter. The feature extraction
method and the classification algorithm depend on the hyper-parameter, but data sub-sampling is
done randomly and uniformly.

Usually we would simply set a trade-off between the mean µ and the standard deviation σ of

the multiple cross-validation estimations ō:

Q(ō) = µ(ō)− ασ(ō), (3.1)

where α is a balance coefficient to define. We could then select the hyper-parameter, from those

tested during the process, that maximizes this function Q.

However we propose a more complex approach in order to deal with:

• the noise in the observations ō, introduced by testing the machine learning pipelines only on

(small) sub-samples of the dataset,

• the desire to have a high confidence in the selected hyper-parameters.

Note that the standard deviation of the cross-validation results is usually a good way to evaluate

the confidence one can have in a model but is not here sufficient to estimate the confidence we

can have in a hyper-parameter because we sub-sampled the data. For example, it does not take

into account the number of times a given hyper-parameter has been tested (ie. the number of

sub-sampled datasets on which it has been tested).

3.3.1 Consider only significant differences

We use Welch’s t-test [14, 15] in order to consider only significant differences in the mean values

of the performance estimations. The idea is to replace µ(ō) in eq. (3.1) by µ̃(ō) where µ̃ can only

take its values in a set Sµ = {µ1, ..., µw}. Sµ is computed through these steps:

i Sort the observation vectors O = {ōi} by increasing mean.

Set O1 = {o1,1, ..., o1,k}, j = 1.
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ii For ō in O,

if W(ō, Oj) > τ , add o1, ..., ok to Oj

else, j ← j + 1, Oj = {o1, ..., ok}
where τ is a threshold and W refers to the p-value of Welch’s t-test.

iii w ← j and for each Oj , set µj as its mean.

3.3.2 Consider hyper-parameters’ neighborhood

To address the confidence problem, we propose to look at the hyper-parameters’ neighborhood.

We indeed expect the pipelines’ performances to be somewhat smooth, ie. close hyper-parameters

yield close performances. Thus the performances of a hyper-parameter’s neighbors can inform us

on its quality.

Ultimately we would select a hyper-parameter that yields high performances and which has close

hyper-parameters tested during the optimization process, and which also yield high performances.

The fact that those neighbors are close is quite important as the distance directly impacts the

informativeness of a neighbor. Given a number nc of neighbors to consider and a radius rc, we

define the smooth mean function µ̃s by:

µ̃s(op̄) =
µneigh(op̄) + β µ̃(op̄)

1 + β
,

µneigh(op̄) =
1

nc

nc∑
i=1

e−
(

di
rc

)2

µ̃(op̄i),

where di = dist(p̄, p̄i) and β is a trade-off parameter.

In the following we will estimate the quality of a hyper-parameter p̄, of observed performances

op̄, through the functions Q̃ and Q̃s:

Q̃(p̄) = µ̃(op̄)− ασ(op̄) (3.2)

Q̃s(p̄) = µ̃s(op̄)− ασ(op̄) (3.3)

3.4 Two pipeline examples

3.4.1 Sentiment analysis

The first problem we tackle is based on text analysis, where the aim is to predict the probability

for a movie review to be positive or negative, ie. to understand the global emotion expressed in the

review. We used Kaggle’s competition Bag of Words Meets Bags of Popcorn which provides 25,000

labeled training data from IMDB. The labels where attributed based on the rating accompanying

the review: 0 for a rating lower than 5 and 1 for a rating greater or equal to 5.

Pipeline description:

i Transform the reviews in Bags of n-grams
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ii Transform the n-grams count vectors in tf-idf vectors

iii Feature selection based on the χ2 test

iv Classify with a multinomial Näıve Bayes classifier

The hyper-parameters:

i Bag of n-grams transformation:

• Maximum number of features to keep nf ∈ [13000; 32000].

• Consider only the terms with a document frequency between dfmin and dfmax, where

dfmin ∈ [0; 0.1], dfmax ∈ [0.4; 1].

• Consider n-grams terms for n between 1 and nngram,max, where nngram,max ∈ [1; 4].

ii Tf-idf transformation: we choose between one of the following methods

• Norm L1

• Norm L2

• Norm L2, sub-linear tf scaling

iii Feature selection: we only keep the κ% best features, where κ ∈ [50; 100].

iv Classification: we use a Lidstone smoothing parameter α ∈ [0.1; 1].

3.4.2 Handwritten digits

The second problem tackled is the famous handwritten digits recognition problem from the MNIST

dataset. Once again we used Kaggle’s platform and so our training dataset consists in 42,000 images

of size 28x28.

Pipeline description:

i Blurring the training images with a Gaussian kernel of size ksize ∈ {3; 5} and standard

deviation kσ ∈ [0; 4] (the blur is not applied when kσ is null).

ii The image matrices are reduced by Principal Component Analysis, and the number of com-

ponents dPCA ∈ [50; 300].

iii Classification is made through polynomial SVMs of degree dSVM ∈ [1; 4] and gamma coeffi-

cient γ = 10g, g ∈ [−3; 1].
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Average cross-validation results for the sentiment analysis problem

Figure 3-2: Mean performances observed on the hyper-parameter space for the sentiment analysis
problem. For visualization purposes, the 5-dimensional hyper-parameters are projected on two
dimensions so that x = d+ 0.5 ∗ ksize + 0.1 ∗ kσ; y = 0.1 ∗ dPCA + 0.1 ∗ (g+ 3). In addition the color
of the points corresponds to their value on the z-axis (the performance).
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Chapter 4

Practical use of n(L)GCP for MLP

optimization

4.1 Predict with noisy observations

In chapter 2 we introduced the non-parametric (Latent) Gaussian Copula Process and explained

how we could learned a mapping function to build such a prior. In that chapter we considered

having noise-free observations of the function f . However we usually have instead noisy observations

y = f(x) + ε of f , and the discussion in the previous chapter largely points out that we cannot

think of a MLP performance estimations as a clear representation of its true quality.

Figure 4-1 displays the deviation of each observation to its estimated true value. The latter is

computed as the observed mean of all cross-validation results given for a single hyper-parameter.

On this figure are represented both the histogram of values observed and a Gaussian estimation of

them. We can see that this noise indeed seem to be Gaussian, which encourage us to really model

the multiple cross-validation estimations of a single hyper-parameter as noisy observations of the

same random variable.

When using a GP prior, considering noisy observations does not change much, as it is taken

independent and identically distributed with variance σ2
n. Thus it suffices to replace the covariance

matrix Kt in eq. (2.4) as follow :

Kt,n = Kt + σ2
nI

where I is the identity matrix [11].

However with n(L)GCP, it is not clear how to deal with such noise, and here are a few questions

that arise:

• Would it help or not to consider all cross-validation estimations or should we rather only

consider the mean ?

• Should we use all cross-validation estimations to learn the mapping function Ψ ?
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Figure 4-1: Histogram of the observed deviations from empirical mean of cross-validation estima-
tions, compared to its Gaussian interpolation in red.

• How would the noise be transformed by Ψ ?

• Can we transform the noisy observations of f(x) to get noisy observations of g(x) ?

4.1.1 Learning the mapping function

By using all cross-validation estimations to learn the mapping function, we would hope to get g(x)

values with an almost Gaussian distribution, thus facilitating the GP estimation for g. However with

only few training data with a relatively high standard deviations in the cross-validation estimations,

we observed that this method could almost erase the benefit of the nGCP by learning a non-

discriminative mapping function (the distribution of the performance estimations seems Gaussian).

4.1.2 Transforming the noise

It is interesting to see that transforming all cross-validation estimations y with Ψ in z = Ψ(f(x) +

ε) = g(x) + ε′ completely deforms the noise ε. Actually if ε is indeed Gaussian, this is the exact

opposite case of chapter 2 as we have Ψ−1(z) ∼ N (f(x), σn). Thus equation (2.7) yields:

Fz(t) = Φf(x),σn ◦Ψ−1(t).

Whereas such a transformation was desired to refine the prior over f , its side effect is to non-linearly

transform the noise without any control. We thus should guess f(x) from y to control the noise.

4.1.3 Reproducing a Gaussian noise

So we consider only the averages of the cross-validation estimations as a proxy for f(x) and suppose

that it gives us observations of g(x) with a Gaussian noise. Formally, let {yi,j}Jj=1 be multiple cross-

validation estimations of a single hyper-parameter p̄i and fi their mean. We consider {zi,j}Jj=1 as
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noisy observations of g(p̄i) = Ψ ◦ f(p̄i) where

zi,j = gi +
yi,j − fi
σf

, (4.1)

gi = Ψ(fi), (4.2)

σf = std(fi, i = 1, ..., N). (4.3)

σf is a scaling parameter to take into account that g is supposed to have a Gaussian distribution

with standard deviation equals to one.

Note that zi = gi + ε
σf

where ε is the Gaussian noise around fi. Thus zi = gi + ε′ where

ε′ ∼ N
(
0,
σn
σf

)
. (4.4)

Finally we modify accordingly the covariance function for the GP estimation of g:

Kt,n = Kt +
(σn
σf

)2
I.

4.1.4 Estimating the noise

As said above we can decide to estimate the noise σn or to fix it identical for all x, which is usually

done with GP. In this particular context of hyper-parameter optimization we propose to set the

noise from the standard deviation of the cross-validation estimations, and we will refer to this

method as the Estimated Gaussian Noise (EGN). This way we have:

Kt,n = Kt +
1

σ2
f


σ2

1

. . .

σ2
N

 ,

σi = std(yi,j , j = 1, .., J).

4.2 Covariance Function

We used both the Squared Exponential (SE) covariance function and another one inspired from [11]

that we will call Exponential Periodic (EP), defined as follow:

kSE(x, x′) = exp(−
m∑
i=1

θi.(xi − x′i)2),

kEP (x, x′) = θ0.k0(x, x′) + θ1.k1(x, x′) + θ2.k2(x, x′)
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with :

x = [x1, ..., xm]T ∈ X ⊂ Rm,

and :

k0(x, x′) = exp(−
m∑
i=1

θ3,i.(xi − x′i)2) (4.5)

k1(x, x′) = exp(−
m∑
i=1

(xi − x′i)2

2.θ4,i

−
m∑
i=1

2
(sin(π

(xi−x′i)
θ5,i

)

θ6,i

)2
) (4.6)

k2(x, x′) =

m∏
i=1

(
1 +

(xi − x′i)2

θ8,i

)−θ7,i
(4.7)

The value of the parameter θ is set while fitting the n(L)GCP to the training data. This is

actually done by first computing the mapping function and the corresponding g values. Then we

only consider the (x, g(x)) data and fit a GP by maximizing the estimated likelihood.

4.3 Acquisition Function

4.3.1 Expected Improvement (EI)

The expected improvement is one of the most widely used acquisition function [9] when dealing

with GP. Given a set of previously tested hyper-parameters Pt, let p̄+ = argmaxp̄∈Pt
f(p̄). We

define the improvement function as:

IGP (p̄) = max{0, gpred(p̄)− g(p̄+)}

and the likelihood of improvement I for a random variable gpred(p̄) ∼ N (µ(p̄), σ(p̄)) is:

dIGP
(I) =

1√
2πσ

exp
(
− (µ− g(p̄+)− I)2

2σ2

)
.

Finally the expected improvement is the integral:

E(IGP ) =

∫ ∞
u=0

u.dIGP
(u).du.

While the expected improvement has a very simple expression for a GP, it is more reasonable

in the n(L)GCP context to compute the improvement on the original function f :

I(p̄) = max{0, fpred(p̄)− f(p̄+)}
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Figure 4-2: nLGCP models of an unknown function (in blue). Predictions (in red) and the expected
improvement (in green, multiplied by 100) are computed based on the training points (blue points).

The likelihood of improvement is actually easily derived from the above expression:

dI(I) =
Ψ′(f+ + I)√

2πσ
exp

(
−
(
µ−Ψ(f+ + I)

)2
2σ2

)
.

where f+ = f(x+).

We recall from eq. (2.16,2.18) the expressions of Ψ′ for nGCP and nLGCP:

Ψ′nGCP (t) =
dest(t)

φ ◦Ψ(t)
, (4.8)

Ψ′nLGCP (p̄, t) =
∑

cluster k

αk(p̄).
dest,k(t)

φ ◦Ψk(t)
, (4.9)

so that we can compute the expected improvement:

aEI = E(I) =

∫ ∞
u=0

u.dI(u).du.

4.3.2 Upper Confidence Bound (UCB)

Another well used acquisition function is the Upper Confidence Bound. With a GP model, we can

easily express the confidence bound through the posterior mean µ and standard deviation σ:

UCBGP,κ(p̄) = µ(p̄) + κσ(p̄)

where κ ≥ 0 is a parameter to control the balance between exploitation and exploration.

With an n(L)GCP model, we are thus interested in maximizing UCBnGCP,κ(p̄) = Ψ−1 ◦

31



UCBGP,κ(p̄):

aUCB = Ψ−1(µ(p̄) + κσ(p̄)).

As Ψ is an increasing function (see eq. (2.10,2.11)), we only have to maximize UCBGP,κ when

dealing with nGCP (although this is not true for nLGCP). This is useful as the costly numerical

inversion of Ψ becomes useless in this case.

4.4 Number of clusters for an nLGCP

When we introduced the Latent Gaussian Copula Process in section 2.3, we said that data are clus-

tered into k clusters using K-Means without any advice on how to choose k. In our hyper-parameter

optimization framework, we propose to increase the number of clusters with the iterations. We re-

call that the number of iterations is exactly the number of already tested hyper-parameters p̄ used

to fit the nLGCP. With this method we can easily control the complexity of the model with respect

to the current knowledge.

In the tests reported in chapter 6 we added one cluster every 30 iterations.
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Figure 4-3: Six first steps of a Smart Search process with the UCB acquisition function (confidence
bounds are shown in cyan). The process begins with the 5 blue points and the goal is to find the
maximum of the unknown blue function f . At each step, f is modeled by an nGCP, which is shown
by the red line, and the selected point (next point to test, ie. the point maximizing the acquisition
function) is in green.
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Chapter 5

Algorithm

5.1 n(L)GCP

Let X be the matrix of inputs (each row is a unique hyper-parameter) and Y the outputs (perfor-

mance estimations).

i Normalize the data:

X̃ := [X̃1|...|X̃m] where X̃i = 1
σi

(Xi −mi[1...1]T ) and mi, σi are respectively the mean and

standard deviation of {Xj,i|j = 1, .., N}. Ỹ := 1
σ (Y −m[1...1]T ).

ii Compute clusters’ attributes:

Perform K-Means on Z := [X̃1|...|X̃m|Ỹ ] to compute the k clusters C1, ..., Ck. For each cluster

Cl, let dest,l be the Kernel Density Estimation, with a Gaussian kernel, of ỸCl
, the sub-matrix

of Ỹ made from the rows j such that the rows Zj are in cluster Cl.

iii Compute the mapping function:

Define the mapping function Ψ(x, y) =
∑k

l=1 αl(x) ∗ Ψl(y) where αl(x) = exp(−s
∑

( dlσl )
2)

(see eq. 2.12) is a coefficient that decreases with the distance between x and the cluster

Cl; Ψl(y) = Φ−1(
∫ y
−∞ dest,l(u).du) and Φ is the cumulative density function of the standard

univariate Gaussian.

iv Transform the original data:

Consider now the vector W := [w1, .., wN ]T where wj = Ψ(x̄j , yj) and x̄j , yj are respectively

the jth row of X̃ and Ỹ .

v Fit a Gaussian Process:

Fit a GP on the data (X̃,W ) via Maximum Likelihood Estimation. Choose either the squared

exponential or exponential periodic covariance function.

vi Predict:

To predict the value y at a given point x = [x1, .., xm], first normalize x, x̃ := [x̃1, .., x̃m]
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where x̃i = xi−mi
σi

. Then use the fitted GP to predict the values of µ(x̃) and σ(x̃) representing

the mean and standard deviation of the Gaussian posterior at point x̃. Finally numerically

inverse Ψ(x̃, .) and compute the expectation ỹ from eq. (2.15).

vii Return y := m+ σ ∗ ỹ.

5.2 Handling cross-validation results and multiple evaluations

The algorithm above needs to be slightly updated when we consider the hyper-parameter optimiza-

tion process. Indeed when dealing with cross-validation results, we have a vector of observations ȳ

instead of a real one y. Moreover, it is possible that the Smart Search process select more than once

a given hyper-parameter, and in that case we would have more than one CV results. So actually

Y is a list for which each entry may have a different length. The first solution is to simply replace

ȳ by its mean and use the algorithm presented above. However we have proposed some methods

to leverage such information, and here is the description of how it modifies the nGCP algorithm:

• Use all CV results to build the mapping function:

The aim is to compute the KDE estimation of the density function by taking all pairs (hyper-

parameter,one of the CV results) into account. To do that, we duplicate the rows in X̃ as

many times as we have observation for the corresponding hyper-parameter (a hyper-parameter

is a row of X) to obtain the matrix X ′, and consider the vector Y ′ of all the CV results that

appear in Y . We then use X ′ and Y ′ as X̃ and Y in point ii. in the algorithm above.

• Model the noise through the EGN method:

We compute the values of σ1, .., σN in eq. (4.5) as the standard deviation of each list entry in

Y , ie. the standard deviation of all CV results for a given hyper-parameter. Then we modify

accordingly the covariance matrix when fitting the GP, as shown in eq. (4.5).

• Fit the GP with all CV results:

In that case we completely replace X̃ and Y by X ′ and Y ′. We only compute the means and

standard deviations in step i. with X and Yµ where Yµ is the mean of each list entry in Y .

Note that this method is not compatible with the EGN.

5.3 Smart Search

Process overview:

i Random initialization:

Sample uniformly inside the bounded hyper-parameter space Ninit hyper-parameters and

compute a performance evaluation for each of them.
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ii Perform Nsmart smart iterations:

Model the performance function with an n(L)GCP given all the hyper-parameters already

tested and their performance evaluations. Use the fitted n(L)GCP to compute the value

of the acquisition at nparam−sampling random candidates uniformly sampled in the hyper-

parameter space. Select the candidate that maximizes the acquisition function and compute

its performance evaluation.

iii End with Nfinal smart iterations for which the acquisition function is simply the predicted

performance.
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Chapter 6

Experiments and Results

6.1 Comparing n(L)GCP and GP for regression
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Figure 6-1: The first row displays the likelihood of the training data given the fitted model. The
second row displays the Standardized Mean Squared Error, which is computed from predictions at
1000 randomly chosen points. The results shown are the average over 20 trials. SE and EP refers
to the covariance function used.

In this section, we compare n(L)GCP and GP through their fitting and predictive power in

a regression perspective. For its common use in Bayesian learning, we use the likelihood of the

training data given the fitted model to assess the ability of a model to fit the data. Its computation

with Gaussian processes is described in [16]. As the mapping function Ψ is part of the model with

n(L)GCP, we can compute the likelihood with the same method, although the GP is fitted on

(X,Ψ ◦ f(X)). In addition we compute the Standardized Mean Squared Error (SMSE) to assess
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the prediction accuracy. This is the square of the difference between the predicted and the true

values of the function, divided by the variance of the true values.

Figure 6-1 compares the nGCP with the GP on four test functions. The custom function

is the one-dimensional function used in Fig. 2-3. The Branin and Hartmann functions are two

commonly used functions to test optimization processes; the input spaces are respectively two- and

six-dimensional.

Figure 6-2 also compares nLGCP through likelihood and SMSE for 1, 2 and 3 clusters to model

the custom function. We observed that increasing the number of clusters always decreased the

model’s likelihood. However this was not necesseraly correlated to a lower predictive accuracy.
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Figure 6-2: Likelihood and SMSE for an nLGCP prior with 1, 2 and 3 clusters to model the custom
function. The results shown are the average over 20 trials, with the exponential periodic kernel,
and predictions are made at 1000 random points.

6.2 Experiments’ Methodology for Hyper-Parameter Optimiza-

tion

We describe in this section how we ran the experiments. The methodology used can be divided

into two main parts: an off-line one, which consists in aggregating as much information as we

can about the pipeline, and an on-line one which consists in sampling hyper-parameters in the

optimization framework. The first part aims at running a lot of experiments (the second part)

much more quickly.

6.2.1 Aggregating information on a pipeline

We actually restrict the hyper-parameter space to a grid, and the aim is basically to get a perfor-

mance score for each point of the grid. To do so, we pick iteratively, at random, a hyper-parameter

p̄ and evaluate it as described in section 3.2: this returns an evaluation E, which depends on the

sub-sampled data, of k-fold cross-validation results c1, ..., ck. After running this for a while, we get

a database where each entry corresponds to a hyper-parameter p̄ and contains a certain number of
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evaluations E1, ..., Enp̄ . We do this during enough time to get approximately at least a score per

hyper-parameter of the space, so that we have multiple evaluations for a good proportion of them.

6.2.2 On-line optimization process

The optimization process asks iteratively for the performance evaluation of hyper-parameters.

Thanks to the off-line work, this only consists in retrieving a value from the database. The result

retrieved for p̄ corresponds to all cross-validation results c1, ..., ck of a given evaluation E of the near-

est neighbors of p̄ that has at least one entry in the database. If the corresponding hyper-parameter

has multiple entries E, we choose at random. However we do not mix the cross-validation results ci

which belong to different evaluations. In particular this prevents from returning misleading results,

for example only high ci for a hyper-parameter that over-fits.

6.2.3 Presentation of the results

When analyzing a hyper-parameter optimization process, we are interested in observing:

i The quality of the hyper-parameters explored during the process.

ii The ability to select hyper-parameters that are really good, with the limited knowledge of

the process.

We recall that when running the optimization process, we only get evaluations of the hyper-

parameters on sub-samples of the dataset, which means that we have a limited knowledge on

the hyper-parameters. However to analyze the results, we suppose that we know the ground truth

thanks to the off-line computations described above.

So point i. can be done by considering either the limited knowledge of an experiment or the ground

truth, and point ii. can be done by ranking the hyper-parameters through the different quality

functions described in section 3.3.

Moreover, we can interpret the quality of a hyper-parameter through several tools:

i The absolute performances achieved by the corresponding pipeline through:

• the mean of all cross-validation results,

• a balanced score between mean and standard deviation,

• the values given by the functions Q̃ and Q̃s (3.3).

ii The relative gain on the hyper-parameter space, where a 0% gain corresponds to the minimum

performance and 100% corresponds to the maximum reachable. The performance can still be

computed by one of the ways listed in i.
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Figure 6-3: Number of hyper-parameters tested to attain a certain gain, defined as the relative
improvement in performance from the minimum to the maximum reachable on the grid space. The
median over several trials are displayed, as well as the firsts and thirds quartiles in dashed lines.
UCB/EI refers to the acquisition function while SE/EP refers to the covariance function.

6.3 Results

6.3.1 On the quality of tested hyper-parameters

Figure 6-3 shows the performances of the n(L)GCP model compared to a GP-based optimization

process and a random grid search. This figure shows the number of iterations needed (ie. the

number of hyper-parameters to test) in order to reach a given relative gain (as defined in section

6.2.3). More results are shown in Appendix B.

Figure 6-4 also displays the number of iterations needed but divided by the number of iterations

needed with a GP-based method to ease comparison.

Figure 6-5 presents how the different methods explore the hyper-parameter space during the

process. While the random grid search visits unbiasedly each hyper-parameter, it is encouraging

to see that smart processes visit more good hyper-parameters.

We observe that n(L)GCP-based methods outperform similar GP-based ones. In particular,

Fig. 6-5 shows that the GP-based method visits less the good hyper-parameters. Although this

could come from a different acquisition function (which could insist more on exploration than

exploitation), one should note that here it only comes from less accurate predictions, as the only

difference with the nGCP-UCB trials is the GP or nGCP model.
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Figure 6-4: Number of hyper-parameters tested to attain a certain gain, in comparison to the
number of iterations needed with a GP. The median over several trials are displayed, as well as the
thirds quartiles in dashed lines.

6.3.2 On information gain

As we can see on Figure 6-6, using an nGCP provides a greater confidence gain. We evaluate the

confidence/information acquired during the search through the maximum of the quality function

Q̃s. As a matter of fact this function measures both the quality of a hyper-parameter but also

takes into account the neighbors tested.

One of the most significant weaknesses of the random grid search is also shown here: it does

not test enough the neighbors of good hyper-parameters. Thus such a process provide much less

information on important hyper-parameters, which is even more crucial when dealing with noisy

estimations.

6.3.3 On ranking hyper-parameters with a trial’s limited knowledge

Figures 6-7 and 6-8 show the correspondence between the rankings made with the limited knowledge

of a trial, through functions Q̃ and Q̃s, and the truth values (computed thanks to the off-line work

described in section 6.2) of function Q̃. Fig. 6-7 displays the ratio between the true score and the

best true score attained during the trial. Fig. 6-8 displays the true rank (based on true scores).

We can see ranks are kept with more difficulty, but what really matters is the quality of the hyper-

parameters. Regarding this, we see that the maximum reachable during the trial is almost always

in the two first positions. Finally we observe that there is not a great difference between Q̃ and

Q̃s, although Q̃s can still help a little in selecting good hyper-parameters.
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Figure 6-5: Hyper-parameters tested during several trials on the sentiment analysis problem.
Hyper-parameters are represented as in Fig. 3-2 in a 2D space, while the z-axis corresponds to the
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Figure 6-7: On each trial, parameters are ranked with Q̃ or Q̃s, and the percentage of the best real
score reached during the hyper-parameter exploration is displayed as a function of the rank. These
are the results on several trials on the sentiment analysis problem, for different sub-methods. The
color corresponds to the frequency of a given pair (rank,percentage of best real score reached) over
the multiple trials. The parameters used are: τ = 0.5, α = 0.5, nc = 3, rc = 200, β = 5.
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Figure 6-8: The real rank, computed from the real scores, as a function of the rank computed
from Q̃ or Q̃s and the limited knowledge of a trial. These are the results on several trials on the
sentiment analysis problem, for different sub-methods. The color corresponds to the frequency of a
given pair (rank,real rank) over the multiple trials. The parameters used are: τ = 0.5, α = 0.5, nc =
3, rc = 200, β = 5.
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Chapter 7

Conclusion and future work

7.1 Conclusion

We introduced the n(L)GCP, a new machine learning method based on Gaussian Copula Processes.

Comparisons with Gaussian Processes for regression purposes proved that nGCP usually fit bet-

ter to the data, and thus should yield higher prediction accuracy. We also presented how to use

n(L)GCP for Bayesian Optimization. While the latent model usually yield lower likelihoods, mean-

ing that the model is supposed to fit worse to the data, we saw that it could yield better prediction

accuracy. In particular, latent models seemed to leverage the data’s distribution learning through

the acquisition functions: for example in Figure 4-2 we see that even if predictions do not change

much when the number of clusters increases, the expected improvement curves change a lot and

become more accurate.

We also presented a complete framework to perform hyper-parameter optimization on machine

learning pipelines. By introducing the noisy performance estimation approach, this framework

becomes easily parallelizable. This particular approach also implied to focus on noise management

for n(L)GCP models.

Finally we tested our methods on two real-world problems, proving that sequential optimization

processes outperform the randomized search, ie. that machine learning pipelines can and thus must

be mined.

7.2 Future work

We hope to see a great appeal in this work and present here some ideas of what we think would

benefit to this domain:

• Boost the computations to learn the mapping function for n(L)GCP.

• Try other latent models, for example by changing the definition of the α coefficients, and com-

pare them. Design an automated method to learn the number of clusters and the smoothing

coefficient.
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• Consider a fully Bayesian treatment of the n(L)GCP model (ie. set a prior/posterior distribu-

tion of the model’s parameters instead of learning them by maximum likelihood estimation)

to compute the acquisition functions. Consider also direct approaches to maximize the ac-

quisition function instead of sampling random candidates.

• Investigate in methods that take the evaluation time in consideration.

• Design a parallel auto-tuning machine for scaling purposes.
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Appendix A

Machine Learning - Complement

A.1 Gaussian Blur

The Gaussian Blur is a smoothing method frequently used in image processing.

This operation is done by applying a filter to the input image. A linear filter transforms the input

pixel values f(i, j) into g(i, j) by the following rule :

g(i, j) =
∑
x,y

f(i+ y, j + y)K(x, y),

for x, y in the filter’s window. K is the called the kernel and shapes the blur by defining the

smoothing coefficient in function of the distance with the input pixel.

A Gaussian blur means that the kernel is a Gaussian :

K(x, y) = Aexp
(
− x2

2σ2
x

− y2

2σ2
y

)
.

A.2 Bag-of-ngrams

The Bag-of-Words is a method to represent text data. The idea is to represent a document (a

sequence of words and tokens) as a real vector. To do so, a dictionary is first built from an ensemble

of documents, and documents are then represented as a set of words with their occurrence counts.

An n-gram is simply a contiguous sequence of n items.

A.3 Tf-Idf

Tf-Idf means Term Frequency - Inverse Document Frequency, and aims at computing the relevance

of a document given a query. The query is decomposed in terms (the words) and the total score is

computed as the sum of each term’s score.

Term frequency refers to the number of times a term occurs in a document. But only taking

into account the term frequency has the drawback to incorrectly give too much importance in terms
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that are very frequent in the language (like ’a’, ’the’, ’of’, ...).

To counter this, each term t is weighted through its inverse document frequency idft = log(Nd
dft

),

where Nd is the number of documents and dft is the number of documents that contain t. This

way, rare words will have a high idf score and frequent words will have a low idf score.

A.4 Principal Component Analysis (PCA)

The aim of PCA is to reduce the dimension of the data while preserving the maximum variance

possible among the studied data. Variance is indeed useful in machine learning as it should ease

clustering and pulling apart, but reducing the dimension is often useful (curse of dimensionality,

computation costs,...).

The eigenvectors of the data’s covariance matrix form an orthogonal basis. The eigenvector

with the highest eigenvalue actual corresponds to the direction in which the data have the highest

variance. The projection of the data on this line is the first component. Following this idea, a

PCA in dimension d is done by projecting the data on the subspace linearly spanned by the first d

eigenvectors (ranked by decreasing eigenvalues).

A.5 χ2 test

In machine learning, the chi-squared (χ2) test is used to measure how much a variable is correlated

with the result. This is mainly used for feature selection purposes, ie. to select the most relevant

subset of features in order to reduce the dimension of the data without loosing useful information.

For categorical data, the test counts the number of instances Oi,j that have the value i and

belong to the class j. If Ei,j if the expectation of Oi,j , ie. N.pi.pj where N is the total number of

instances, pi is the probability for the feature to have the value i and pj is the probability for the

instance to belong to class j, then the χ2 score is :

χ2 =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
.

The higher this score is, the more correlated the feature is with the class. Thus this enables

to rank the features by decreasing order so that the first features should be the most relevant to

predict the class of an instance.

A.6 Polynomial Support Vector Machines (SVM)

With a polynomial kernel, the scalar product 〈x, x′〉 = k(x, x′) where:

k(x, x′) = (γ〈x, x′〉+ r)d
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A.7 Multinomial Näıve Bayes Classifier

This presentation comes from Scikit-Learn’s documentation 1.

A.7.1 Näıve Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theo-

rem with the “naive” assumption of independence between every pair of features. Given a class

variable y and a dependent feature vector x1 through xn, Bayes’ theorem states the following

relationship: P (y | x1, . . . , xn) = P (y)P (x1,...xn|y)
P (x1,...,xn) Using the naive independence assumption that

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y), for all i, this relationship is simplified to :

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
.

Since P (x1, . . . , xn) is constant given the input, we can use the following classification rule:

P (y | x1, . . . , xn) ∝ P (y)

n∏
i=1

P (xi | y)⇒ ŷ = arg max
y
P (y)

n∏
i=1

P (xi | y),

and we can use Maximum A Posteriori (MAP) estimation to estimate P(y) and P (xi | y); the

former is then the relative frequency of class y in the training set. The different naive Bayes

classifiers differ mainly by the assumptions they make regarding the distribution ofP (xi | y). In

spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked quite well

in many real-world situations, famously document classification and spam filtering. They require

a small amount of training data to estimate the necessary parameters.

A.7.2 Multinomial Näıve Bayes

Multinomial Näıve bayes is one of the two classic naive Bayes variants used in text classification

(where the data are typically represented as word vector counts or tf-idf vectors). The distribution

is parametrized by vectors θy = (θy1, . . . , θyn) for each class y, where n is the number of features

(in text classification, the size of the vocabulary) and θyi is the probability P (xi | y) of feature i

appearing in a sample belonging to class y. The parameters θy are estimated by a smoothed version

of maximum likelihood, ie. relative frequency counting:

θ̂yi =
Nyi + α

Ny + αn
,

where Nyi =
∑

x∈T xi is the number of times feature i appears in a sample of class y in the training

set T, and Ny =
∑|T |

i=1Nyi is the total count of all features for class y. The smoothing priors α ≥ 0

accounts for features not present in the learning samples and prevents zero probabilities in further

computations. Setting α = 1 is called Laplace smoothing, while α < 1 is called Lidstone smoothing.

1Available at : http://scikit-learn.org/stable/modules/naive bayes.html
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A.8 Cross-validation

Cross-validation is a technique used to assess the quality of a predictive model. Basically the idea

is to learn a model on a training set and measure its performance on a test set. But always taking

the same training/test sets provide a biased evaluation of the model. That is why cross-validation

aims at partitioning the data into several training/test pairs.

In particular, in k-fold cross-validation, the original set is randomly partitioned into k equal

sized sub-samples. The model is then trained and tested k times and at each time, one of the k

sub-samples is used for testing while the other k − 1 are used for training. The advantage is that

all the data are used at least once for training and testing.

Usually the average of 5-fold or 10-fold cross-validation results is used to assess the quality of

the model. But one can also, for example, take the standard deviation of the k results (the smaller,

the better).

A.9 Maximum Likelihood Estimation

The Maximum Likelihood Estimation is a method used to perform model selection. Given a model

parametrized by θ to represent the random variables X1, ..., Xn, and some observed values x1, ..., xn,

the likelihood of θ is defined as :

L(θ) = P(X1 = x1, ..., Xn = xn|θ).

So the maximum likelihood estimate of θ is the value that maximizes L.

A.10 Kernel Density Estimation (KDE)

KDE is a non-parametric technique to estimate the probability density function p of a random

variable. Given the data x1, ...xn, p is computed as :

p(x) =
n∑
i=1

K(
x− xi
h

), (A.1)

where K is a kernel and h is a smoothing parameter called the bandwidth. The Gaussian kernel

KG is such that KG(x) ∝ exp(−x2

2 ) and p integrates to one.
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Appendix B

Results - Complement
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All results for the digit recognition problem

Figure B-1: Number of hyper-parameters tested to attain a certain gain, defined as the relative
improvement in performance from the minimum to the maximum reachable on the grid space. The
median over several trials are displayed, as well as the firsts and thirds quartiles in dashed lines.
UCB/EI refers to the acquisition function while SE/EP refers to the covariance function. On the
left plot we considered only the means of all cross-validation results while on the right plot we used
the EGN method.
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Appendix C

Code

The code is publicly available on Github at https://github.com/HDI-Project/DeepMining.

It is entirely written in Python and fully compatible with Scikit-Learn. As shown below it is really

easy to use with Scikit-Learn’s pipeline implementation, but it is also possible to define one’s own

estimator (a function that returns a (noisy or not) performance evaluation of a hyper-parameter

set).

C.1 Run SmartSearch

# l o a d d a t a
from sklearn.datasets import fetch 20newsgroups
categories = [’alt.atheism’,’talk.religion.misc’]
data = fetch 20newsgroups(subset=’train’, categories=categories)

# d e f i n e a p i p e l i n e c o m b i n i n g a t e x t f e a t u r e e x t r a c t o r
# w i t h a s i m p l e c l a s s i f i e r
pipeline = Pipeline([

(’vect’, CountVectorizer()),
(’tfidf’, TfidfTransformer()),
(’clf’, SGDClassifier()),

])

# d e f i n e p a r a m e t e r s
parameters = {

’vect max df ’: [’float’,[0.5,1.]],
’vect ngram range’: [’cat’,[(1, 1), (1, 2)]],
’tfidf norm’: [’cat’,(’l1’, ’l2’)],
’clf alpha’: [’float’,[0.000001, 0.0001]],
’clf penalty’: [’cat’,[’l2’, ’elasticnet’]]

}

search = SmartSearch(parameters ,
estimator=pipeline,
X=data.data, y=data.target,
n iter=30)

search. fit()
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C.2 SmartSearch Log

Loading categories
# [ ’ a l t . a t h e i s m ’ ,
# ’ t a l k . r e l i g i o n . m i s c ’ ]
# 8 5 7 d o c u m e n t s

Start random init
# S t e p 0 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 9 4 8 1 3 3 ,
# ’ t f i d f n o r m ’ : ’ l 1 ’ ,
# ’ c l f a l p h a ’ : 4 . 5 7 3 4 2 e − 0 5 }
Score : 0.564769481844
# S t e p 1 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 7 3 5 4 1 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 3 . 8 6 6 1 7 e − 0 5 }
Score : 0.949836801306
# S t e p 2 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 9 3 5 7 0 1 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 4 . 9 8 7 7 4 e − 0 5 }
Score : 0.946300829593
# S t e p 3 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 6 1 9 2 8 6 ,
# ’ t f i d f n o r m ’ : ’ l 1 ’ ,
# ’ c l f a l p h a ’ : 9 . 7 6 2 2 7 e − 0 5 }
Score : 0.753862369101
# S t e p 4 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 6 4 3 ,
# ’ t f i d f n o r m ’ : ’ l 1 ’ ,
# ’ c l f a l p h a ’ : 1 . 8 4 1 3 8 e − 0 5 }
Score : 0.7445124439
# S t e p 5 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 9 9 0 1 9 6 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 8 . 5 0 1 2 9 e − 0 5 }
Score : 0.949823201414
# S t e p 6 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 8 1 8 6 3 4 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 6 . 1 6 8 3 5 e − 0 5 }
Score : 0.942826057392
# S t e p 7 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 7 1 2 0 5 ,
# ’ t f i d f n o r m ’ : ’ l 1 ’ ,
# ’ c l f a l p h a ’ : 9 . 2 9 6 5 4 e − 0 5 }
Score : 0.772405820753
# S t e p 8 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 8 5 1 3 4 5 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 3 . 8 9 0 7 e − 0 5 }
Score : 0.935849313205

# S t e p 9 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 7 4 4 5 7 9 ,
# ’ t f i d f n o r m ’ : ’ l 1 ’ ,
# ’ c l f a l p h a ’ : 3 . 7 4 3 3 6 e − 0 5 }
Score : 0.924167006664

Start smart search
# S t e p 1 0 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 8 7 0 8 3 1 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 2 . 1 6 6 5 9 e − 0 6 }
Score : 0.938147694818
# S t e p 1 1 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 4 4 3 3 4 ,
# ’ t f i d f n o r m ’ : ’ l 1 ’ ,
# ’ c l f a l p h a ’ : 2 . 9 9 9 9 1 e − 0 6 }
Score : 0.93352373181
# S t e p 1 2 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 0 0 4 9 8 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 8 7 5 2 9 e − 0 5 }
Score : 0.955671154631
# S t e p 1 3 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 6 9 6 7 9 1 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 4 . 0 5 2 2 9 e − 0 6 }
Score : 0.932340541276
# S t e p 1 4 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 9 0 2 5 8 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 7 6 7 7 e − 0 5 }
Score : 0.954501563987
# S t e p 1 5 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 1 2 8 8 2 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 7 . 2 7 6 5 1 e − 0 5 }
Score : 0.954515163879
# S t e p 1 6 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 3 8 9 7 1 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 7 . 6 0 6 0 4 e − 0 5 }
Score : 0.953318373453
# S t e p 1 7 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 0 3 1 8 4 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 1 1 5 1 9 e − 0 5 }
Score : 0.954494764042
# S t e p 1 8 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
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# ’ v e c t m a x d f ’ : 0 . 8 9 0 5 0 6 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 9 7 8 9 e − 0 5 }
Score : 0.943975248198
# S t e p 1 9 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 9 9 8 7 2 1 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 3 . 8 0 9 3 4 e − 0 5 }
Score : 0.945144838841
# S t e p 2 0 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 6 5 9 2 2 9 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 6 0 6 9 7 e − 0 5 }
Score : 0.954494764042
# S t e p 2 1 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 6 6 5 4 5 6 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 9 8 5 4 3 e − 0 5 }
Score : 0.949836801306
# S t e p 2 2 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 9 1 4 8 3 4 ,
# ’ t f i d f n o r m ’ : ’ l 1 ’ ,
# ’ c l f a l p h a ’ : 2 . 0 7 8 6 e − 0 6 }
Score : 0.933482932137
# S t e p 2 3 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 8 8 2 9 4 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 5 . 6 3 3 7 6 e − 0 5 }
Score : 0.953311573507
# S t e p 2 4 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 1 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 0 7 3 9 6 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 3 0 7 2 8 e − 0 5 }

Score : 0.952169182647
# S t e p 2 5 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ e l a s t i c n e t ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 5 4 1 8 1 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 4 6 6 1 9 e − 0 5 }
Score : 0.954494764042
# S t e p 2 6 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 5 8 4 6 2 4 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 9 . 3 1 2 8 1 e − 0 5 }
Score : 0.954481164151
# S t e p 2 7 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 9 8 7 0 6 9 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 4 . 9 8 4 0 4 e − 0 5 }
Score : 0.948646810826
# S t e p 2 8 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 7 2 6 4 1 4 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 6 . 2 8 0 7 1 e − 0 5 }
Score : 0.956820345437
# S t e p 2 9 :
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 7 4 7 6 5 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 6 . 5 3 5 5 4 e − 0 5 }
Score : 0.955664354685

Tested 30 parameters
Max cv score 0.956820345437
# { ’ v e c t n g r a m r a n g e ’ : ( 1 , 2 ) ,
# ’ c l f p e n a l t y ’ : ’ l 2 ’ ,
# ’ v e c t m a x d f ’ : 0 . 7 2 6 4 1 4 ,
# ’ t f i d f n o r m ’ : ’ l 2 ’ ,
# ’ c l f a l p h a ’ : 6 . 2 8 0 7 1 e − 0 5 }

C.3 Scikit-Learn

This presentation is an excerpt of [17].

C.3.1 Introduction

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algo-

rithms for medium-scale supervised and unsupervised problems. This package focuses on bringing

machine learning to non-specialists using a general-purpose high-level language. Emphasis is put

on ease of use, performance, documentation, and API consistency. It has minimal dependencies

and is distributed under the simplified BSD license, encouraging its use in both academic and com-

mercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-

learn.sourceforge.net.
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C.3.2 Project Vision

• Code quality. Rather than providing as many features as possible, the project’s goal has been

to provide solid implementations. Code quality is ensured with unit tests—as of release 0.8,

test coverage is 81%—and the use of static analysis tools such as pyflakes and pep8. Finally,

we strive to use consistent naming for the functions and parameters used throughout a strict

adherence to the Python coding guidelines and numpy style documentation.

• BSD licensing. Most of the Python ecosystem is licensed with non-copyleft licenses. While

such policy is beneficial for adoption of these tools by commercial projects, it does impose

some restrictions: we are unable to use some existing scientific code, such as the GSL.

• Bare-bone design and API. To lower the barrier of entry, we avoid framework code and keep

the number of different objects to a minimum, relying on numpy arrays for data containers.

• Community-driven development. We base our development on collaborative tools such as git,

github and public mailing lists. External contributions are welcome and encouraged.

• Documentation. Scikit-learn provides a ∼300 page user guide including narrative documen-

tation, class references, a tutorial, installation instructions, as well as more than 60 examples,

some featuring real-world applications. We try to minimize the use of machine-learning jar-

gon, while maintaining precision with regards to the algorithms employed.
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